Joint Accelerator School Indore January 2008

TM CLASS CAVITY DESIGN

Jean Delayen

Thomas Jefferson National Accelerator Facility Old Dominion University

500 MHz, Single-cell

350 MHz, 4-cell, Nb on Cu

1500 MHz, 5-cell

1300 MHz 9-cell

Pill Box Cavity

Modes in Pill Box Cavity

- TM₀₁₀
 - Electric field is purely longitudinal
 - Electric and magnetic fields have no angular dependence
 - Frequency depends only on radius, independent on length
- **TM**_{0mn}
 - Monopoles modes that can couple to the beam and exchange energy
- **TM**_{1mn}
 - Dipole modes that can deflect the beam
- TE modes
 - No longitudinal E field
 - Cannot couple to the beam

TM_{Imn} **Modes in a Pill Box Cavity**

$$\frac{E_r}{E_0} = -\frac{n\pi}{x_{lm}} \frac{R}{L} J_l' \left(x_{lm} \frac{r}{R} \right) \sin\left(n\pi \frac{z}{L}\right) \cos l\varphi$$

$$\frac{E_{\varphi}}{E_0} = \frac{ln\pi}{x_{lm}^2} \frac{R^2}{rL} J_l \left(x_{lm} \frac{r}{R} \right) \sin\left(n\pi \frac{z}{L}\right) \sin l\varphi$$

$$\frac{E_z}{E_0} = J_l \left(x_{lm} \frac{r}{R} \right) \sin\left(n\pi \frac{z}{L}\right) \cos l\varphi$$

$$\omega_{lmn} = c \sqrt{\left(\frac{x_{lm}}{R}\right)^2 + \left(\frac{\pi n}{L}\right)^2}$$

$$\frac{H_r}{E_0} = -i\omega\varepsilon \frac{l}{x_{lm}^2} \frac{R^2}{r} J_l \left(x_{lm} \frac{r}{R} \right) \cos\left(n\pi \frac{z}{L} \right) \sin l\varphi$$
$$\frac{H_{\varphi}}{E_0} = -i\omega\varepsilon \frac{R}{x_{lm}} J_l' \left(x_{lm} \frac{r}{R} \right) \cos\left(n\pi \frac{z}{L} \right) \cos l\varphi$$
$$\frac{H_z}{E_0} = 0$$

$$x_{lm}$$
 is the mth root of $J_l(x)$

TM₀₁₀ Mode in a Pill Box Cavity

$$E_r = E_{\varphi} = 0 \qquad E_z = E_0 J_0 \left(x_{01} \frac{r}{R} \right)$$
$$H_r = H_z = 0 \qquad H_{\varphi} = -i\omega \varepsilon E_0 \frac{R}{x_{01}} J_1 \left(x_{01} \frac{r}{R} \right)$$

$$\omega = x_{01} \frac{c}{R}$$
 $x_{01} = 2.405$

$$R = \frac{x_{01}}{2\pi}\lambda = 0.383\lambda$$

TM₀₁₀ Mode in a Pill Box Cavity

Energy content

$$U = \mathcal{E}_0 E_0^2 \frac{\pi}{2} J_1^2(x_{01}) L R^2$$

Power dissipation

$$P = E_0^2 \frac{R_s}{\eta^2} \pi J_1^2(x_{01})(R+L)R$$

$$x_{01} = 2.40483$$
$$J_1(x_{01}) = 0.51915$$

Geometrical factor

$$G = \eta \frac{x_{01}}{2} \frac{L}{(R+L)}$$

TM010 Mode in a Pill Box Cavity

Energy Gain

$$\Delta W = E_0 \frac{\lambda}{\pi} \sin \frac{\pi L}{\lambda}$$

Gradient

$$E_{acc} = \frac{\Delta W}{\lambda/2} = E_0 \frac{2}{\pi} \sin \frac{\pi L}{\lambda}$$

Shunt impedance

$$R_{sh} = \frac{\eta^2}{R_s} \frac{1}{\pi^3 J_1^2(x_{01})} \frac{\lambda^2}{R(R+L)} \sin^2\left(\frac{\pi L}{\lambda}\right)$$

Real Cavities

Beam tubes reduce the electric field on axis

Real Cavities

Single Cell Cavities

Single Cell Cavities

Multi-Cell Cavities

Multi-Cell Cavities

: Sketch of the electric field lines of the $\pi\text{-mode}$ of a 5-cell :

Multi-Cell Cavities

Mode frequencies:

$$\frac{\omega_m^2}{\omega_0^2} = 1 + 2k \left(1 - \cos \frac{\pi m}{n} \right)$$
$$\frac{\omega_n - \omega_{n-1}}{\omega_0} \approx k \left(1 - \cos \frac{\pi}{n} \right) \approx \frac{k}{2} \left(\frac{\pi}{n} \right)^2$$

Voltages in cells:

$$V_j^m = \sin\left(\pi m \frac{2j-1}{2n}\right)$$

Pass-Band Modes Frequencies

Cell Excitations in Pass-Band Modes

9 Cell, Mode 5

9 Cell, Mode 6 0.8 0.6 0.4 0.2 4 5 8 2 1 3 6 -0.2 -0.4 -0.6 -0.8

9 Cell, Mode 7

9 Cell, Mode 8

Field Flatness

Geometrical differences between cells causes a mixing of the eigenmodes

Sensitivity to mechanical deformation depends on mode spacing

Mechanical Design

The mechanical design of a cavity follows its RF design:

Lorentz Force Detuning ٠

E and *H* at *E*_{acc} = 25 *MV/m* in *TESLA* inner-cup

Mechanical Design

Essential for the operation of a pulsed accelerator $\Delta f = k_L (E_{acc})^2$

Mechanical Design

Mechanical Resonances of a multi-cell cavity

TESLA structure

The mechanical resonances modulate frequency of the accelerating mode. Sources of their excitation: vacuum pumps, ground vibrations...

SNS Cell Shape Parametrization

- Full parametric model of the cavity in terms of 7 meaningful geometrical parameters:
 - Ellipse ratio at the equator (R=B/A) ruled by mechanics
 - Ellipse ratio at the iris (r=b/a)
 Epeak
 - Side wall inclination (a) and position (d) Epeak vs. Bpeak tradeoff and coupling k
 - Cavity iris radius Riris coupling k
 - Cavity Length L
 β
 - Cavity radius D used for frequency tuning
- Behavior of all e.m. and mechanical properties has been found as a function of the above parameters

Tools used for the parametrization

Using of the parametric tool developed at *INFN Milano* for the analysis of the cavity shape on the electromagnetic parameters:

- All RF computations are handled by SUPERFISH
- Inner cell tuning is performed through the cell diameter, all the characteristic cell parameters stay constant: R, r, α, d, L, Riris
- End cell tuning is performed through the wall angle inclination, α, or distance, d.

R, L and Riris are independently settable.

- Multicell cavity is then built to minimize the field unflatness, compute the effective β and the final cavity performances.
- A proper file to transfer the cavity geometry to ANSYS is then generated

R: "mechanical" parameter

- The equator aspect ratio (R) is a free parameter for what concerns the π-mode e.m. design but the cavity mechanical parameters are greatly affected by the equator shape:
- R>1 allows better stress distribution in the unstiffened cavity but a bigger Lorentz force coefficient
- The cell tuning strategy doesn't affect the cell's performances (e.m. and mechanical)

L = 56.8 mm	r = 1.7	$\alpha = 7^{\circ}$
d = 11 mm	R _{iris} = 43	mm

Optimal value for r

Optimal value for r

Influence of d @ constant R_{iris}

 Better mechanical performances are reached with decreasing d

2.5

10

5

0

1139

1.3

Influence of d @ constant k

• If we want to keep a constant cell to cell coupling we have to adjust Riris

Dependence on $\boldsymbol{\alpha}$

The wall angle α slightly affects all the e.m. parameters, but has a strong effect on the

mechanical performances:

- Lower values are preferred for Lorentz force detuning
- Too small α could be critical for chemistry and cleaning

Chosen
$$\alpha = 7 \text{ deg}$$

End cell tune

- d set 1 mm lower than the in-cell
- optimization of **r** = b/a at iris
- Slater compensation (decrease of the magnetic volume) of the cut-off tube and d reduction (↓f), increasing the wall angle α. This gives also the necessary stiffening to the end cell
- the frequency of end cell + tube is about 50 kHz lower than the in-cell's due to the asimmetry

End cell @ FPC side tune

Optimal stiffening ring position

K_L for different boundary conditions

- The estimate for $\rm K_L$ strongly depends on the cell boundaries. We compute it for 3 different cases:
 - Fixed cell length
 - Free cell length
 - Helium Vessel/Tuning System (= 3 tubes with diameter 30 mm and thickness 2 mm)

β_g = 0.61 Cavity for SNS

Effective β that matches the TTF curve = 0.630

E_p/E_{acc}	2.72 (2.63 inner cell)
$B_{p}/E_{acc} [mT/(MV/m)]$	5.73 (5.44 inner cell)
Ŕ/Q [Ω]	279
G [Ω]	$214 \qquad \bigcirc $
k [%]	1.53
Q _{BCS} @ 2 K [10 ⁹]	27.8
Frequency [MHz]	805.000
Field Flatness [%]	2
	KL70 = -2.9 [Hz/(MV/m) ²] KL80 = -3.4 [Hz/(MV/m) ²]

Nb thickness = 3.8 mm-

	Ge	ometrical Parameters			
	Inner cell	End Cell Left	End Grou	End Group (coupler)	
			Left	Right	
L [cm]	5.68	5.68	5.	68	
R _{iris} [cm]	4.3	4.3	4.3	6.5	
D [cm]	16.376	16.376	16.	698	
d [cm]	1.1	1.0	1.1	1.0	
r	1.7	1.5	1.7	1.5	
R	1.0	1.0	1.	.0	
α [deg]	7.0	8.36	7.0	10.0	

$\beta_g = 0.81$ Cavity for SNS

Effective β that matches the TTF curve = 0.832

E_{p}/E_{acc}	2.19 (2.14 inne	er cell)				
B _p /E _{acc} [mT/(MV/m)] 4.72 (4.58 inner cell)						
R/Q [Ω]	484.8			\rightarrow		
G [Ω]	233					
k [%]	1.52					
Q _{BCS} @ 2 K [10 ⁹]	36.2					
Frequency [MHz]	805.004	KL70 = -0.7 [Hz/(MV/r	n)²] KL80 =	-0.8 [Hz/(MV/m)²]		
Field Flatness [%]	1.1	Nb thi	ckness = 3.8 mm-			
Geometrical Parameters						
Inr	er cell	End Cell Left	End Group	(coupler)		
			Left	Right		
L [cm]	7.55	7.55	7.55	5		
R _{iris} [cm]	4.88	4.88	4.88	7.0		
D [cm]	16.415	16.415	16.6 1	1		
d [cm]	1.5	1.3	1.5	1.3		
r	1.8	1.6	1.8	1.6		
R	1.0	1.0	1.0			
α [deg]	7.0	10.072	7.0	10.0		

Stress and Modal Analysis

Nominal Medium Beta Cavity

SNS Cavity Modal Analysis

Medium Beta Cavity

End Condition	Load	127 mm	70 mm Rings	No Rings
	(atm)	Rings (Hz)	(Hz)	(Hz)
Fixed-Guided	-	85	48	38
Fixed-Fixed	-	126 (*204)	57 (*59)	48 (*42)
Fixed-Fixed Mid Supt	-	149 (*220)	95 (~*108)	88
Compressed 0.4mm	1.65	125	-	46
Compressed 1.25 mm	1.65	124	-	46

(*D. Schrage, LANL)

$$(\sim \text{Beta} = 0.76)$$

2000-0xxxx/vlb

SNS Cavity Modal Analysis

High Beta Cavity

End Condition	Load	127 mm	70 mm Rings	No Rings
	(atm)	Rings (Hz)	(Hz)	(Hz)
Fixed-Fixed	_	120	-	46
Fixed-Guided	-	107	-	34
Compressed 0.4mm	1.65	120	-	44
Compressed 1.25 mm	1.65	119	-	44

Mode Analysis, Beta = 0.81

Frequency (Hz)

vertical/equator

axial/equator tangential/equator

axial/flange

Natural Frequency (Hz)

90 100 110 120 130 140

FE Analysis

SNS Cavity Mechanical Design Requirements

- Minimize/prevent microphonics
- Withstand loss of vacuum accident up to 5 atm
- Withstand cool down at 1.65 atm
- Adhere to intent of ASME B&P Code
 - Allowable Stress (Sm) = 2/3 Yield Stress
 - Primary Membrane Stress (Pm) <= (Sm)</p>
 - Pm + Bending <= 1.5*Sm</p>
 - Pm + Bending + Secondary Stress <= 3*Sm</p>
 - Allowable Stresses

»Warm Niobium = 4,667 psi »Cold Niobium = 53,333 psi

Medium Beta Stress Analysis

SNS Medium Beta Cavity Wall Stresses						
Compression (mm/end)	Loads (atm)	127 mm Stiffening Ring Max Stress (psi)	70 mm Stiffening Ring Max Stress (psi)	No Stiffening Ring Max Stress (psi)		
0.2	1.65	_	-	-		
0.4	1.65	3,960	-	4,310		
0.5	1.65	4,610	-	4,550		
0.75	1.65	7,500	-	4,670		
1.25	1.65	17,500	5,730 (1.8 atm)	5,000		
0.75	5	11,200	-	12,900		
1.25	5	14,300	10,100	47,100		

High Beta Stress Analysis

SNS High Beta Cavity Wall Stresses						
Compression Loads		127 mm	70 mm Stiffening	No Stiffening		
(mm/end)	(atm)	Max Stress (psi)	King Max Stress	Ring Max Stress		
			(psi)	(psi)		
0.2	1.65	3,040	-	-		
0.4	1.65	6,350	-	3,140		
0.5	1.65	8,070	-	3,350		
0.75	1.65	12,500	-	3,940		
1.25	1.65	21,400	-	5,830		
0.75	5	11,500	-	9,130		
1.25	5	14,300	-	9,590		

